O.P.Code: 20EE0208

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Regular & Supplementary Examinations August-2023

ELECTRICAL POWER TRANSMISSION SYSTEMS

(Electrical & Electronics Engineering)

		(Electrical & Electronics Engineering)			
Tiı	ne	: 3 Hours	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Find the expression for the inductance of single-phase two-wire transmission lines.	CO1	L3	6M
	h	Explain the different types of conductors briefly.	CO1	L2	6M
	-	OR	COI		UIVI
2	a	Calculate the capacitance per phase of a three-phase transmission line as shown in the following fig. The radius of the conductor is 0.5cm. The lines are un-transposed.	CO1	L4	6M
		1-4m-1-4m-1			
ğ					
		← 8m - →			
	b	When conductors are unsymmetrically placed, derive an expression for	CO1	L3	6M
		the capacitance per phase for a 3-phase overhead transmission line.			
2		Designs the accretions for any line subtract the	CO3	1.2	CNT
3	a	Derive the equations for sending voltage and the current using the nominal T method with a neat phasor diagram.	CO2	L3	6M
	h	Explain the transmission efficiency and % regulation in the transmission	CO2	L2	6M
		line.	002		UIVI
		OR			
4	D	erive expressions for sending end voltage and current for a long	CO ₂	L3	12M
	tra	ansmission line using a rigorous method.			
		UNIT-III			
5	a	What is string efficiency? Explain any two methods for improving string efficiency.	CO3	L2	6M
	b	A 3-phase, 220kV, 50Hz transmission line consisting of a 1.5 cm radius	CO ₄	L3	6M
		conductor spaced 2m apart in an equilateral triangular formation. If the			
		temperature is 40°c and atmospheric pressure is 76cm. Calculate the			
		corona loss per km of the line. Take m _a =0.85.			
,		OR	CO2	T 2	01
6	a	Each line of the three-phase system is suspended by a string of 3 insulators. If the voltage express the ten unit is 17.5kV coloulete the line	CO3	L3	6M
		insulators. If the voltage across the top unit is 17.5kV, calculate the line to neutral voltage. Assume that the shunt capacitance between each			
		insulator and earth is 1/8 th of the capacitance of the insulator itself. Also,			
		find the string efficiency.			
	b	What are the advantages and disadvantages of corona?	CO4	L2	6M
		UNIT-IV			
7	D	efine sag and Derive the expression for sag and tension when the	CO5	L3	12M
		apports are at unequal heights.			

8	a	Write a short note on the effect of wind and ice loading on the calculation of sag.	CO5	L3	6M
	b	An overhead transmission line at a river crossing is supported by two towers at heights of 40m and 90 m above water level. The horizontal distance between the towers is 400m. If the allowable tension is 2000kg,	CO5	L4	6M
		find the clearance between the conductor and water at a point mid-way between the towers' height of the conductor is 1kg/m. UNIT-V			
9	9	Explain the construction of underground cables.	CO6	L3	8M
		What are the limitations of solid types of cables?	CO6	L2	4M
		OR			
10	a	A33KV single core cable has a conductor diameter of 10 mm and a sheath of the inside diameter of 40mm. find the maximum and minimum stress in the insulation.	CO6	L3	6M
	b	Distinguish between Underground cables and overhead lines.	CO ₆	L2	6M

*** END ***